Linear Programming :A Math notes


4. Linear Programming

Convex Combination :

If x1 and x2 are two elements in a set (taken ) such that if a + b = 1 ('a' and 'b' are scalar ), then convex combination of x1, x2 ∈ S (artritrany elements) is given by (ax1 + bx2).
Also, we can write it as
            ax1 + (1-a)x2    [∵ a + b = 1]

Convex Region :

A region is said to be convex if the line-segment drawn between any two points of this region is completely existing within this region.
    A circle, a square, a rectangle, a rhombus, a trapezium etc are (all) convex regions. A quadrilateral is a convex region, but a pentagon cannot be always  a convex region.

Liner set : Affine set : Convex set

A set A is linear set (a vector subspace of X, where X is any set in the R) if (∝ x1 + β x2) ∈ A, where ∝, β ∈ R ; x1, x2 ∈ A
     A set A is affine set (a vector subspace of X, where X is any set in R) if [∝x1 + (1 - ∝)x2] ∈ A, where ∝ ∈ R; x1 , x2 ∈ A.
    A set A is convex set (a vector subspace of X, where X is any set in R) if [∝x1 + (1 - ∝)x2] ∈ A, where x1, x2 ∈ A; ∝ ∈ [0, 1]; here [0,1] is the closed interval, i.e. o ≤ ∝ ≤ 1.

Hyperplane

A set H = {x1 , x2,......,xn} is called a hyperplane if c1x1 + c2x2 + ........ + cnxn = Z (Z ∈ R), c are scalar. Briefly we write H = {x/cx = Z}; Z ∈ Rand c is a scalar; as a hyperplane.

Convex Hull

The set Hc of all convex combinations of points in the set A (a vector subspace of X, where X is any set in the R) is a convex hull.

NOTE : If 'aff' shows the word 'affine' and 'aff(a)' denotes the 'affine set A' then 
(i) aff (aff A) = aff A
(ii) aff (A1 + A2) = aff (A1) + aff (A2)
Here 't' stand for union 'U' of sets.

Ex. Show that intersection of two convex sets is convex.

Soln. Let S1 and S2 be two convex sets.

        ∴ x1, x2 ∈ (S1 ⋂ S2), any two elements.

    ⇒ x1, x2 ∈ S1 and x1, x1 ∈ S2

    ⇒[λx1 + (1 - λ) x2] ∈ S1 and [λx2 + (1 - λ) x2] ∈ S2     [∵ S1 & S2 are convex]

    ⇒ [λx1 + (1 - λ) x2] ∈ S1 ⋂ S2     [λ is a scalar ; λ ∈ R ]

    Hence, (S1 ⋂ S2) is also convex.

Note : Intersection of finite (n ∈ N) convex sets is also a convex set.

Ex. Show taht a hyperplan is a convex set.

Soln. Let H = {x| cx = z ; c is scalar ; z ∈ R} be a hyperplane.

    Suppose  x1, x2 ∈ H, any two elements.

    ∴ cx1 = z -----------(1)

    and cx2 = z --------(2),

by property of H ( as definition & supposition ) Let the convex combination of x1, x2 ∈ H be

        x3λx1 + (1 - λ) x2    [λ is a scalar ; λ ∈ R]

    ∴ cx3 = c [λx1 + (1 - λ) x2]

    ⇒ cx3 = cλx1 + c(1 - λ) x2

    ⇒ cx3 = λcx1 + (1 - λ) cx2

    ⇒ cx3 = λz + (1 - λ)z (from 1. & 2.)

    ⇒ cx3 = λz

∴ x3 = λx1 + (1 - λ) x∈ H (also)

Hence, the hyperplane H is a convex set.

Ex. Show that the set of all feasible solutions to a linear programming problem is a convex set.

Soln. For convenience, let us consider a l.p.p 
        optimize z = cx

        s.t. Ax = b

Here Q is the set of x ≥ 0 (A ∈ R; b ∈ Q) relation numbers. Suppose that x1, x2 (x1, x2 ≥ 0) be two feasible solutions (taken arbitrarily) in the set of feasible solutions to the above l.p.p.

        ∴ Ax1 = b ------------(1)

        and Ax2 = b ----------(2),

by property (constraint) of x1 and x2 be given as

        x3 = λx1 + (1 - λ) x   [λ is a scalar ; λ ∈ R]

Now we have

        A.x3 = A . [λx1 + (1 - λ) x2]

    ⇒ A.x3 = Aλx1 + A(1 - λ) x2

    ⇒ A.x3 = λ . Ax1 + (1 - λ) .Ax2

    ⇒ A.x3 = λb +  (1 - λ)b    (from 1. & 2.)

    ⇒ A.x3 = b

     x3 = λx1 + (1 - λ) xis also a feasible solution to the l.p.p. and thus belongs to the set of feasible solution to the l.p.p.

Hence, the set of all feasible solutions to a linear programming problem is a convex set.

Ex. Prove that a line-segment is a convex set.

Soln. Let us consider a line-segment P 1 P2 given as

                    ax + by = c --------- (1)

where a, b are scalars.

Suppose that P1 (x1, y1) and P2 (x2, y2) be two end-points of the line-segment P1P2. the convex combination of P1 and P2 is given as (suppose)

                    ∝ = λx1 + (1 - λ) x2 ---------- (1)

                    β = λy1 + (1 - λ) y2 -----------(2)

where λ is a scalar ; λ ∈ R

Now, 
            a∝ + bβ = a[λx1 + (1 - λ) x2] + b[λy1 + (1 - λ) y2]

            a∝ + bβ = λa x+ λb y+ (1 - λ) ax2 + (1 - λ) by2   [since P1 & P2 are on the line-segment, therefore ax1 + by= c & ax2 + by= c ]

            ⇒ a∝ + bβ = λ(ax1  + by1) + (1 - λ)(ax2  + by2)

            ⇒ a∝ + bβ = λc + (1 - λ)c

            ⇒ a∝ + bβ = c

Hence, the convex combination of P1 and P2 is also belonging to the line-segment.

Hence a line-segment is a convex set.

Ex. Show that a circle is a convex set.

Soln.  For convenience, let us consider a circle of radius '⍴' and center at the origin O (0, 0) and thus its equation is

                x2 + y22 ---------- (1)
let (x1, y1) and (x2, y2) be two points in the circle.

            ∴ x12 +y12 ≤ ⍴2 -------- (2)

            and x22 + y22 ≤ ⍴2 -------- (3)

The convex  combination of these two points is given as

            u = λx1 + (1 - λ) x2

            v = λy1 + (1 - λ) y2

Where λ is a scalar ; λ ∈ R.

Now, 
            u2 + v2 = [λx1 + (1 - λ) x2]2 + [λy1 + (1 - λ) y2]2

    ⇒ u2 + v2 = λ2 (x12 + y12) + (1 - λ)(x22 + y22) + 2λ (1 - λ) (x1x2 + y1y2)

    ⇒ u2 + v2  ≤  λ2+ (1 - λ)2+ 2λ (1 - λ) (x1x2 + y1y2) ----------(4) (by using 2. & 3.)

Now, from cauch's inequality

x1x2 + y1y2 < √x12 + y12 . √x22 + y22 = √⍴2√⍴2

∴ from (4),

    ⇒ u2 + v2  <  λ2+ (1 - λ)2+ 2λ (1 - λ) √⍴2√⍴2

    ⇒ u2 + v2  < [ λ2 + (1 - λ)+ 2λ (1 - λ) ] 2

    ⇒ u2 + v2  < [ λ + (1 - λ)]2 = 2

    ⇒ u2 + v2  < 2  ⇒Convex combination of (x1, y1) and (x2, y2) is also in the circle.

Hence, a circle a convex set.

General from of linear Programming problem

A linear programming problem may be written in generalized from as

Optimize z = c1x1 + c2x2 + _ _ _ _ +cnxn

s.t. a11x1 + a12x2 + a13x3 + _ _ _ _ _ + a1nx ≤ or = or ≥ b1

    a21x1 + a22x2 + a23x3 + _ _ _ _ _ + a2nx ≤ or = or ≥ b2

    -------        ------        ------                           --------                -------      

    -------        ------        ------                           --------                -------      

    am1x1 + am2x2 + am3x3 + _ _ _ _ _ + amnx ≤ or = or ≥ bm

        x1x2x3, ------ , xn  ≥  0.

Where (i) optimize may be maximize or minimize 
            (ii) the matrix

                        c = [c1 c2 c3 -- -- -- -- cn] or c = [ci]1✕2 is the matrix of coefficients of the decision-variable x1x2x3, ------ , xn in the objective function z.

Linear Programming
Linear Programming






























No comments:

Post a Comment